G

T

SR P Y
D

Py
')l’l’l x“

LR
LSS

ATy

A

o’

s
PR NNy

Y

1,
x.)‘

NN

A RN
et

Ty

e "
'

A)

\

“ %

‘\‘-‘-\‘

Y

Unclassified

0N FLE COPY
RECYUMITY CLASSFIZATION 2F Thi§ PAGE '‘When Lare Entered)

REPORT DOCUMENTATION PAGE BEF ORE CONPL LTINS v

'Y REPCRT NUMBER 2. GOVY ACCESSION MO, RECIPIENT'S CATALOG NUMBER

|
it

4 T T_E rand Subt-tle; . TYPE OF REPCRT & PERIQD CCVERED

Hypercube and Shuffle-Exchange Algorithms Technical Report
for Image Component Labeling

. PERFORMING ORG. REPORT NUMBER

TR 87-04-03

7. ALTHORrS; . CONTRACT OR GRANT NUMBER(s)

R. E. Cypher, J. L. . Sanz and L. Snyder N00014-86-K-0264

9. PERFCRMING DRGANIZATION NAME AND ADDRESS
University of Washington
Department of Computer Science
Seattle, Washington 98195

11, ZCNTROLLING OFFICE NAME AND ADDRESS . REPORT DATE

Office of Naval Research April 1987

Information Systems Program ‘““"ZE“°‘°‘°ES
Arlinqgton, VA 22217

T4 MONITORING AGENCY NAME & ADDRESS(I! difterent from Controlling Oflice; . SECURITY CLASS. (of this report)
Unclassified

1Sa. DECLA SSlFlCATIONI DOWNGRADING
SCHEQULE

DISTRIBUTION STAT _MENT /of this Repor:;

Distribution of this report is unlimited.

. D'STR'BUTICN STATEMENT ‘of the avstract entered in Blo~k 20, Il different from Report)

DIIC

SUPPLEMENTARY NCTES

19 KEY WORDS (Continue on reverse side if necessary and Identlly by block number)

parallel algorithms, image proce551ng, hypercube; shuffle-exchange;
connected component labeling /

o

20 ABSTRAZT /Continuo on reverse srde If neceseary and identily bv block number)

This paper presents algorithms for labeling the connected components of a
binary image using a hypercu9720r s?y§f1e-exchange computer2 The algorithms
label the components of an N pixel image in 0(Tog“N) time using a
hypercube or shuffle- exchange computer with N processors and a constant amount
of memory per processor. Ee algorithms that are preserted are the first to
solve this problem in 0(10g°N) time. The algorithms are based on a divide-
and-conquer approach and use as a subroutine an 0(log N) time PRAM algorithm

for labeling the connected components of a graph. The simulation of the PRAM

F O R
0D 1473 Tt AN OF U NOLY 85,5 9850LETE
- A~ R TY CLASSIFICATION MF Tris FAGE (Whan De'a Aniere.,

- R -
W .r,_-(‘qu_f Y -r._:.; o SRS

.‘».: ;
=
23 - H -
N T R vt) ‘
Z? - by the hypercube and shuffle-exchange computers is i ici

N . pa ularly efficient

: because the PRAM that is beina simulated has only o<m§75§ processors and

(™

memory cells.

"

. S . ; .
- . e Z 7, ia
‘ a7

‘
7

v

LV RV B 4

[ofNf s

»
E
‘I
<

Lt -

.S

O Pyt

. --
v oy N
A W

i
s
3
MR

Pl) »
AR AN

1/}

-ll .
ety

NNy

4

: © Accesston For

f_‘ T - —
o : NTIS hA&I

I : \ .

,: gDTu.Lm]

7, Ui Ve 3

._:. ; oTiC ! ‘L IO @ D

{ Judiirieer on

’\ \ coPv

\ L SPEOKED o —

6

. |

8" - e . — ;
- i “.-A‘—-—-—.‘
< P littrftationy '
-' ‘- :.. - . ~ N ”1

& v Avatinrliity Coles :
LA -

k- Av L andzar

Diat | _.rnoecial

AL I

LI
N
a—

LN)

a‘a ae
i
r——

Ty

d -
g SECURITY CLASSIFICATION OF "TwiS PAGF’When Data Fntered:

LN

o P

a & &£ 4 l. l. -
el et e,

.

g

% 5

e gy -
[AN
Phe'is d

X

o
)

~ B9

5 A -
P J‘"/:f_

«
»

PR

0

[
et
)

W S0 N Y,

L l.".‘

~“0"

L)
e 'l-

a g
1 1)
AR YN
.' ..“. l'_l

o

IA. -
LS.
v,
L
o,y
-‘.."
([

Hypercube and Shuffle-Exchange Algorithms
for Image Component Labeling

R. Cypher (*) J.L.C. Sanz (**) L. Snyder (*)

(*) Computer Science Department
University of Washington - Seattle, Wa.

Abstract

This paper presents algorithms for labeling the connected com-
ponents of a binary image using a hypercube or shuffle-exchange
computer. The algorithms label the components of an N2«
N'7? pixel image in O{log? N) time using a hypercube or shuffle-
exchange computer with N processors and a constant amount
of memory per processor. The algorithms that are presented
are the first to solve this problem in O(log2 N) time. The
algorithms are based on a divide-and-conquer approach and
use as a subroutine an O(log N) time PRAM algorithm for
labeling the connected components of a graph. The simulation
of the PRAM by thoshypercube and shuffle-exchange computers
is particularly efficient because the PRAM that is being simu-
lated has only O(.\'3 ’4) processors and memory cells.

1.~ Introduction

n
The problem of labeling the connected components in a binary

image is addressed. This problem is of great importance to the
image processing community because it forms a bridge between
low-lcvel iconic algorithms and high-level symbolic ones (!3),(i7),
Because of its importance, a large number of paral.] algorithms
have been developed for image component labeling

(3),4),5),(6) 0) (8),(M,12,16), This paper presents algorithms for
image component labeling using hypercube and shuffle-
exchange computers. These algorithms are asymptotically
faster than previously known algorithms for the problem using
these types of parallel computers. The remainder of this section
cxarmmunes models of parallel computers, the image component
labeling problem and previous work in the area. Section 2
describes some previously published algorithms that will be
used as subroutines. In Section 3, the hypercube and shuffle-
exchange algorithms are presented and analysed. Section 4

contains conclusions.

(**) Computer Science Department

IBM Almaden Research Center - San Jose! Ca.

The hypercube, the shuffie-exchange and the PRAM are all
models of paralle] computers. All of these models cperate n
a synchronous, SIMD manner. Let the processors n each
model be numbered 0 .. N-1. In the hypercube and shuile-
exchange computers each processor has a constant amount of
local random-access memory and can communicate with otzer
processors through a fixed interconnection network. In the
hypercube, processor i is connected to processor j if the bicary
representations of i and j differ in exactly | bit position. In
the shuffle-exchange, processor i is connected to processor : if
j = Shuffle(i), j = Unshuffle(i) or j = Exchangeii) wbere
Shuffle(i) = 2i mod (N-1), Unshuffle is the inverse of Shu:Tle,
and Exchange(i) = i+1 - 2(i mod 2) (5. A hypercube or
shuffle-exchange of size N is a hypercube or shuffle-exchazge
computer with N processors.

In the PRAM, all processors have access to a common
memory. In a single time step, all processors can read rom or
write to the common memory. A PRAM of size N is a PRAM
computer with N processors and N words of memory. Varian:s
of the PRAM model differ in allowing multiple processors si-
multaneous access to a single memory location. The most
powerful type of PRAM is the CRCW (concurrent read, cza-
current write) PRAM. In this model, any number of przcesscrs
may simultaneously read from or write to a single memery
location. When more than one processor tries to read from a
single memory location, all of them succeced. When rmore than
one processor tries to write to a single memory location, cnae
of them succeeds. The sclection of which processor <i.oceds
depends on which type of CRCW PRAM madel is being used.

The input to the image component labeling probiem 1s an
NP2 g NI array of binary pixels. Two 1-valued pixels are
adjacent if they share a vertical or horizontal edge, and tney
are connected if there exists a path of adjacent 1-valued pixels
from one to the other. The image component labelir . procica

P X

7’
2 %%

. s\}
L
R
\--
o
S
o
~~ -
o
v, -
‘o . . : _ . .
S is to label each 1-valued pixel such that any two 1-valued pixels shuffle-exchange computer. The input is a set of R records,
" receive the same label if and only if they are connected. A set stored no more than onc per proccssor, in an N processr
= . .) ‘

AN of pixels that must receive the same label is a connecred com- machine. The output is the same set of records, now storsd
' :;-: ponent of the image. onc per processor, in the first R processors. Nassimi and Saka
» oo
Ay present an O(log N) time algonthm for this operation. A sbgat
A MIN The 1mage component labeling problem is a special case of generalization of this problem starts with R rccords, stored =o

) g P gp P P
. the graph component labeling problem. Specifically, given a more than K per processor, and returns with the records stored
A binary tmage |, create the corresponding undirected graph G in the first ceiling(R/K) processors, again having no more than
) '\.:' = (V, E) where V consists of the 1-valued pixels in I and E K records per processor. For any fixed value of K, this gener-
:‘:-r.. consists of all pairs (i, j) where i and j are adjacent 1-valued alized version of the problem is easily solved in O(log N) tice
‘.‘:',,-: pixels in 1. The connected components in G correspond exactly by simulating a KN processor machine with an N processor
":\:":" to the connected components in I. As a result of this corre- machine and running Nassimi and Sahni's algorithm on tze

simulated machine.

spondence, graph component labeling algorithms can be used
to solve the image component labeling problem.

In (:4), Shiloach and Vishkin present a PRAM algorithm

This generalized algorithm will be caLad
the Compress(K) algonithm.

The paper that presents the Rank and Concentrate aigo-

' for labeling the connected components of an undirected graph ~ rithms shows how a single operation of an Arbitrary-CRCW
~_ containing v vertices and ¢ edges. Their algorithm requires PRAM of size N can be simulated in O(log? N) time by a
° O(log v) time on a CRCW PRAM of size v+ 2e. The type of hypercube or shuffle-exchange of size N. The simulaticn algo-

- CRCW PRAM that they use will be calied the Arbitrary-CRCW rithm consists of an O(log? N) time bitonic sort and a number

::-:'-_' PRAM. In this model, the processor that succeeds in writing of O(log N) time routines. Thus the O(log? N) time of tae

~:::1' to a contested memory location is chosen arbitrarily. By using simulation algorithm is due solely to the time required for the

:"'f.. the correspondence between graph and image component la- bitonic sort.

SN beling that was discussed above. it is clear that Shiloach and
) Vishkin's algorithm can be used to obtain an algorithm for Another important subroutine is also given by Nassim an

Sahni. In

hypercube and shuffle-exchange computers.

labeling the connected components of an N'2 x N!72 image in (11, they present algorithms for sorting cata on

O(log N) time using*4n Arbitrary-CRCW PRAM of size N. For anv fixed
value of K 2 1, the least-significant-digit radix sort algorithm
In (10), Nassimi and Sahni present an algorithm for simulating

a PRAM with a hypercube or shuffle-exchange computer. Their

that they present sorts N integers, each of which is in the range
1.. N!'*UK i O(log N) time using a hypercube or shuffle-
exchange of size NIFUR This algorithm is important tecause

algorithm simulates a single operation of an Arbitrary-CRCW
PRAM of size N in O(log? N) time using a hypercube or
shuffle-exchange of \gize N. Using this simulation and the
- PRAM algorithm mentioned above, it is possible to obtain an

[}
v Te m

it can be used to simulate a single operation of an Arb:itrary-

CRCW PRAM of size N with a hypercube or shuffle-exchange

of size N * 1K in O(log N) time. This simulation is identical

a a2
L B |
i
.

:- O(log3 N) time algorithm for labeling the connected components to the 0(1og2 N) time simulation presented in (19), except that
..) of an image with a hypercube or shuffle-exchange computer. the bitonic sort is replaced by the least-significant-dig:t racix
¥ s The algonthms presented in this paper improve upon this result sort. This O(log N) time simulation algorithm will be referred
K- by requiring only O(Ic)g2 N) time. They are the first O(log2 N) to as the Fast_Simulation(K) algorithm.
.- time algorithms for labeling the connected components of an

image with a hypercube or shuffle-exchange computer. The other subroutine that will be used in this paper :s

S Shiloach and Vishkin's PRAM algorithm for labeling the cca-
[] nected components of a graph (14). As was mentioned earizer,
{ 2.- Subroutines their algorithm uses an Arbitrary-CRCW PRAM of size v~ 2e
'_ to label the connected components of a graph contamung v
'. There are a number of previously published algorithms that vertices and ¢ edges in O(log v) time. In order to descrize thewr

o a'cnrithin, a few terms must be defined. A rooted tree 1s a

L are used as subroutines in the current paper. This section e

{.‘- briefly discusses these subroutines. One useful subroutine con- i‘:a:idg;p:}h::eir::a1;:;:t::(:g::’r;fo:‘i:s:c\i::ip; ':AZ

RSN sists of the Rank and Concentrate algorithms presented in (10, ’ -

rooted tree 10 e root veileX. N\ rooled star is a fosted Toee

This subrcuiui: 1 w.cd t0 consoiidaic Jala Ui a Lypeicawoe o

P v Wy - e ety
1_:4-,‘.1_:4"_4',';*‘.5 ',\'1-';,, T mf I;J,_I..f\,-“. o ,_f._-; _“J‘_'{_
o o ST PLELON. Y, (X AV aaly

P

o

-
PFS LSS

PR
«T s 2 2 0

L

.

. e e e
P

-

o
»
>
X o
LJ

NS

1]
s

00

v
.
5

A

ﬂ'?i'.f.

[ff.)‘

-
vy
‘2

Y
-
s 0

«
4

. .l}.‘,

P

R R
A N)

Copy available o p

petmit fully

in which every vertex (including the root) points directly to the
root.

In the algorithm, each vertex i has associated with it a
variable D(i) that points to some vertex in the graph. If the
pairs (i, D(i)) are viewed as being directed edges, then the
variables D(i) define a graph that is called the pointer graph.
Throughout the algorithm, the pointer graph consists of a for-
est of rooted trees. At the start of the algorithm, D(i) = i for
all i, so the pointer graph consists of v rooted stars each con-
tatning 1 vertex. The algorithm proceeds by performing a
number of “shortcut” operations that reduce the heights of the
rooted trees and “hooking” operations that merge rooted trees.
At the end of the algorithm, the pointer graph consists of a
forest of rooted stars, where each star contains the vertices of
one of the connected components in the original graph. Thus
the D(i) pointer fields can be considered to be labels that
partition the graph into connected components. Because each
shortcut and hooking operation requires constant time, and
because Shiloach and Vishkin prove that only O(log v) shortcut
and hocking operations are required, the entire algorithm runs
in O(log v) time.

3.- The Image Component Labeling
Algorithms *

Having discussed the necessary subroutines, it is now possible
to describe the 0(log2 N) time hypercube and shuffle-exchange
algorithms for image component labeling. This section gives a
trief description of the algorithms. This description is accom-
panied by an examp!é that is presented in Figures 1-4. Then
a more detailed description and a proof of correctness are given,
Finally, an analysis of the running time is presented.

The hypercube -nd shuffle-exchange algorithms are very
closely related to one another. Both use N processors to label
the connected components in an N2y N12 pixel binary image
(see Figure 1). They are based on a divide-and-conquer tech-
nique where the N pixel image is divided into approximately
N2 square windows each containing approximately N2 pixels.
The connected components within the windows are labeled
using a recursive call (see Figure 2).

After the windows have been labeled, adjacent [-valued
pixels have the same label unless they lic on the borders of
dift2rent windows. The next task is to corrcet the labels of the
pixcls that lie on the borders of the windows. This is accom-

kA
o

gl M I P AT AN AT A AT T
\'k") .\ »I-. &&!' 50; ‘. -’ na_-

TIC does not

legible reproduction

plished by using Shiloach and Vishkin's Otlog N) 2=e £ XAV
algonthm for labeling the connected comporents = a4 =2pn
This gives the border pixels their correct labeis (sor Tiguse 3.
Then the non-border pixels are relabeled zccorang 12 the e
that were assigned to the border pixels. Thus is e casre:
labeling of the components in the image 1see Figu~ 4). T"hex
the last step changes the labels of some ot the crmpcoemt
This step is required in order t0 make the recursive i funcuor
correctly.

The details of the image component .abeling a.i:nta— asx
given below. It is assumed that N = 4" Each provssser | has
a variable D(i) that holds the current lzzel of its ~zl.

Step 1:

e [f N = 1, set D(i) := i. Otherwise, recursively =ef 0z V.
x M windows of the image in parallel, where M = > an:
m = ceiling(n 2). This step sets the variable D in =1 a’
the processors.

Step 2:

e Let S = the set of processors that are on thea beriers =7 the
M x M windows and contain l-valued pixels. F>7 eacz 1 1=
S, processor 1 creates up to 4 edge records as [z lows. ror
each jin S, if i is adjacent to j and if i and ¢ are = dif=ren:
M x M windows, then processor i creates the recsrd < (>
If D(i) # i, then processor i creates txe records <i, Tii)>
and <D(i), 1>.

Step 3:

® The edge records are placed in the first N M procsysers. w1t
each processor holding at most 12 edse reccrds. “2e Com-
press(12) subroutine is used to accomruish this.

Step 4:

e Shiloach and Vishkin's Otlog N) time PRAM a::nth—
is used to label the connected compernents o the mape Ten
resented by the edge records created 1 Step 2 The sope
records form the input vector E arnd the oprocsssors = ¢
correspond to the PRAM processors used 12 152 wgermam
Notice that there are at most 12N> * elge ragorls 1ad - N
processors in S. The Fast_Simulate X+ algenth= s uses
simulate an. Arbitrary-CRCW PRAM L{se ON 4 o on
hypercube or shuffle-exchange of size N. This ©ro ra:oeu
the border pixels.

Y

RIS

e T
--.
L]

~ -

o

"

AP
R R

P
o

.
.
S A]

Pt e
LA

e
LI P P
NN R AR
.t .
)

P

v
.

'
Y

l v . . ' 1 <<
T RRNERRRA
ol 2 ST NERP RS .

“ -
FOERR

Step S:

All processors (including those not in S) set D(i) := D(D(i)).
At this point each connected component in the NP2x N2
image is represented by a rooted star. This step relabels the
non-border pixels according to the labels that were assigned
to the border pixels in Step 4.

Step 6:

® Let T = the set of processors that are on the border of the
N2 x N1 image. For eachiin T, processor i attempts to
set D(D(i)) := i. For each variable D(D(i)) being written
to, it is assumed that one (arbitrarily selected) write attempt
succeeds. Then all processors set D(i) := D(D(i)). This step
assures that the recursive call will work correctly.

After Step 1, any pair of pixels that have the same label are
in fact in the same connected component. However, it is
possible that more than one label has been assigned to a single
connected component (this happens whenever a component
appears in more than one window). The purpose of Steps 2-5
is to relabel pixels so that only 1 label is assigned to each
connected component. It will be shown that Steps 2-5 do in
fact accomplish this.

Let Label(i, k) be*the label assigned to pixel i after Step k.
Let G be the undirected graph created in Steps 2 and 3. Note
that G = (V, E) where V = S and E is the set of all unordered
pairs (i, j) where i and j are in S, and either j = Label(i, 1) or
else 1 and j are adjacent and located in different M x M windows.

laim 1: If Step,l correctly labels the M x M windows,
then for _U i,j in S, Label(i, 4) = Label(j, 4) if and only if i
and j are in the same connected component in the image.

Proof: (Orutted)
Claim 2: If Step 1 correctly labels the M x M windows,
then for all 1-valued pixels i and j, Label(i, 5) = Label(j, 5) if

and only if i and j are in the same connected component in
the image.

Proof: (Omitted)

Claim 3: For all I-valued pixels i and j, Label(i, §) =
Label(j, 5) if and only if i and | are in the same connected
component in the image.

T A
TR

AL,

-

Proof: (Omitted)

Claim 3 shows that the image is correctly labelec xier Ster
5. Because Step 6 only relabels some of the compczents. anc
no two of the components are given the same new .abe. the
image is also correctly labeled after Step 6. Step 6 =sures tha:
all of the image components that contain an eiemez: of 7 are
rooted in T. This is necessary so that when the 2 ;::ntz= is
called recursively in Step [, the labets that are assignec rzarz=rtee
that in Step 2, if i is in S then D() is also in S.

Step 2 requires constant time. Step 3 requires Orlcz N
time. Step 4 consists of O(log N) PRAM steps, eacz =f ==ick
is simulated in O(log N) time, so Step 4 requires C<log; hy
time. Steps S and 6 can each be considered to e a s—gle
operation of an Arbitrary-CRCW PRAM of size N. ané zac
be simulated in 0(1og2 N) time 0), The total time ‘or s=eps
2 through 6 is thus less than or equal to Clog® N “or some
constant C, and the total time for the algorithm is t=us O iog”
N).

4.- Conclusion

This paper has shown that O(Iog2 N) time image cs=pcasnt
labeling algorithms are possible on the hvpercube a=: shu"e-
exchange computers. The algorithms that are presez:ad —.zke
use of a divide-and-conquer strategy. The image is d:-ded —to
windows that are labeled recursively, and the resulis of t==se
labelings are then combined to obtain the final resit. The
combination step uses a PRAM algorithm for la~ing -ae
connected components of a graph. The key to the za zont==ms
is the reduction of the amount of data that must > rcized
during this combination step. This reduction is due 1z the Jact
that only the borders of the windows need to be ccnuder=z.

These algorithms demonstrate that PRAM algori=ms zan
be very helpful in designing fast algorithms for realis:: parz iel
machines, but that they must be used careiully. A swz:ghzor-
ward approach would simply simulate the PRAM - zcrzam
on the hypercube or shuffle-exchange computer. This :-pre.ach
vields O()og’ N) time algorithms. By using a divide-ar.-

approach and only simulating the PRAM algonthm =nen <ae
amount of data to be processed is reduced, O-leg” N =me
algonthms are obtained.

[
-
WPt
et

L2

vy

=N
N

i
LA

.
L

Bibliography

1. R. Cyvpher, J. L. C. Sanz, L. Snyder, "EREW PRAM

and Mesh Connected Computer Algorithms for Image
Component Labeling”, to appear in 1987 |EEE Com-
puter Society Workshop on Computer Architecture,
Pattern Analysis and Machine Intelligence.

. R. Cypher, J. L. C. Sanz, L. Snyder, “"Algorithms for
Image Component Labeling on SIMD Mesh Con-
nected Computers”, to appear in Proc. 1987 Intl. Con-
ference on Parallel Processing.

. R. Hummel, “Connected Component Labelling in Im-
age Processing with MIMD Architectures” in
Intermediate-Level Image Processing, Academic Press,
1986, pp. 101-127.

. R. Hummel, A. Rojer, “Implementing a Parallel Con-
nected Component Algorithm on MIMD Architec-
tures”, IEEE Computer Scciety Workshop on Com-
puter Architecture for Pattern Analysis and Image
Data Base Management, Miami, Florida, 1985.

. Y. Hung, A. Rost:x}feld, “Parallel Processing of Linear
Quadtrees on a Mesh-Connected Computer”, Tech.
Rep. CAR-TR-278, Center for Automation Research,
U. of Maryland, March 1987.

. V.K. P. Kumar, M. M. Eshaghian, "Parallel Geometric
Algoritams for Digitized Pictures on Mesh of Trees”
(preliminary version), Proc. 1986 Intl. Conference on
Parallel Processing, pp. 270-273.

. W. Lim, “Fast algorithms for labeling connected com-
ponents in 2-D arrays”, Tech. Rep. 86.22, Thinking
Machines Corp., Cambridge, Mass., July 1986.

. R. Miller, Q. Stout, “Varying Diameter and Problem
Size in Mesh-Connected Computers” (preliminary ver-
sion), Proc. 1985 intl. Conference on Parallel Process-
ing, pp. 697-699.

. D. Nassimi, S. Sahni, "Finding Connected Components
and Connected Ones on a Mesh-Connected Parallel

Computer”, Siam J. Comput., vol. 9, no.4, November
1980, pp.744-757.

10. D. Nassimi, S. Sahni, “Data Broadcasung in SIMD
Computers”, IEEE Transactions on Computers. i
¢-30, no. 2, February 1981, pp. 101-107.

11. D. Nassimi, S, Sahni, “Parallel Permutation and Scr2zg
Algorithms and a New Generalized Connecuon Mat-
work”, Journal of the ACM, Vol. 29, No.3, July 1732,
pp. 642-667.

12. A. Rosenfeld, “Parallel Image Processing Using Czl-
lular Arrays®, IEEE Computer, pp. 14-20, 1983,

13. A. Rosenfeld, A. Kak, Digital Picture Processing. Ac-
ademic Press, vols. 1-2, 1982.

14. Y. Shiloach, L. Vishkin, "An O(log n) Parailel C:3-
nectivity Algorithm”, Journal of Algorithms, vel 3.
1982, pp. 57-67.

15. H. S. Stone, "Parallel Processing with the Perfect Szuf-
fle”, IEEE Transaction on Computers, vol. ¢-20. zo.
2, February 1971, pp. 153-161.

16. Q. F. Stout, "Properties of Divide-and-Conquer A zo-
rithms for Image Processing”, 1985 IEEE Compu.ier
Society Workshop on Computer Architecture for Pzt-
tern Analysis and Image Database Management. -p.
203-209, 1985.

17. S. Tanimoto, “Architectural Issues for Intermediz:e-
Level Vision” in Intermediate-Level Image Processi=g,
Academic Press, 1986, pp. 3-16.

Acknowledgement

The work of R. Cypher was supported in part by a Nauczal
Science Foundation Fellowship and the work of L. Szn Zer was
supported in part by the National Science Foundaticz Grzat
DCR 8416878.

Ll S ey bk ol o A A

Lo ko Bl Al B o 2o a am e ta ko kRl At Bt gtu-ad b, g2 4

it ok o
-

&

o
ol

)

B e L R

[

[

i i
' '
' ' S ~ [
.o ' ' [
. '
‘ 1
' '
. [' ' 4) [
' t 1
' [
' '
' '
' e “) o
10 1 4
' '
[l '
. t cl
-] ' Lo 2 I (=] > <o
1o t ' [
' ' v
e — e —— — — — — % a
.])
y ¥ L) [N 1 o " [et
' 3 ‘ [
' '
']
] 1
L] 3] i ¢l v " n o
[“ [l '
' '
] '
' '
il s o o 1O o o o
' N
1 '
' [l
']
o < ~ ~ 1 ™ o) ot
— - ™M 3 ~3
———— e e ——— —— %
— — o — — — — —
— — — o [=3 o — —
o o — o — =3 — =3
—
o — — o ~ o — o
L
-
——— ——]
&0

v 5 e 2.8 »

P X —~ I'g
S MY

- SRS

A »

x ¥ K ¥ s ey okt ot g o4
AR AN ~ of o
%% %% Xy

S S S

+
1
'
'
'
'
*
]
'
'
+
]
'
1
1
]
'
+
'
'

+
1
t
'
t
'
]
'
'
'
.
'
'
'
'
'
'
+
)

+

cl () o 1

o~ (o] ol cl

o~ o~ o~ o~

Y

cl 4 ¢l o

-t
~ o o o
— ~3 2
1 ¥] o] o

deemccemec o eeemccadammecescacocceaoaoe

Figure &4

Figure 3

n

Jx"

o

oA

LM

L

\ 3
."‘-.
z
e
\
o
P
- % N
\ -
bt
-

-
s

-l
¥
r
Ll
2,
L
' 4
\
Ll
m””.
P
1

RIS { L

“ \
J‘ AN OO,

M S LS LS

\'5' -\‘\
s-'*f"

RS
'&)’NJ’ -

L

PN

3 AV

'\ - -_.\.‘(.\ 08

"r'\-\'-"\.
,(-_*‘).\\"",.

h-‘ cb‘-i".l Wi »

S

!'\.ix o ‘k; .n"\}‘\

0

)

‘\-

“M

v

